Understanding the science behind your hair health starts with your DNA. This resource page compiles every hair-related genetic trait analyzed in the StrandIQ DNA reports βranging from nutrient processing to antioxidant functionβand links each one to the peer-reviewed research that supports it.
β
Whether you're curious about how your body handles zinc or why your hair might be more prone to oxidative stress, this reference hub is here to help you dig deeper. Each trait is backed by published studies and clinical findings that shed light on how genetics can influence everything from hair growth cycles to scalp inflammation.
β
Hair & Scalp Report Traits (33)
β
1. Autoimmune Hair Loss (Alopecia Areata)
β
StrandIQ SNP Marker Count: 31
β
StrandIQ Genes for Trait:
ACOXL, AP4B1-AS1, ATXN2, CCDC88B, CIT, CLEC16A, CTLA4, ERBB3, FPR1, FPR2, GSE1, IFNG-AS1, IL13, IL2RA, IRF4, LINC01882, LPP, MAGI3, MIR4435-2HG, MRLN, MTCO3P1, PFKFB3, PLXNC1, PTCSC2, PTPN22, RAET1M, SLC16A9, SYT14, TAFA2, TH2LCRR, TNFRSF1A
β
References:
Chen, Y., et al. (2023). Genetic prediction of male pattern baldness based on large independent datasets. European Journal of Human Genetics, 31(3), 321β328. PMID: 36336714.
β
Eriksson, A.L., et al. (2009). Genetic variations in sex steroid-related genes as predictors of serum estrogen levels in men. Journal of Clinical Endocrinology & Metabolism, 94(3), 1033β1041. PMID: 19116238.
β
Hagenaars, S.P., et al. (2017). Genetic prediction of male pattern baldness. PLoS Genetics, 13(2), e1006594. PMID: 28196072.
Heilmann-Heimbach, S., et al. (2017). Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nature Communications, 8, 14694. PMID: 28272467.
β
Kanda, S., et al. (2015). Effects of functional genetic polymorphisms in the CYP19A1 gene on prostate cancer risk and survival. International Journal of Cancer, 136(1), 74β82. PMID: 24803183.
Liu, F., et al. (2016). Prediction of male-pattern baldness from genotypes. European Journal of Human Genetics, 24(6), 895β902. PMID: 26508577.
β
MarciΕska, M., et al. (2015). Evaluation of DNA variants associated with androgenetic alopecia and their potential to predict male pattern baldness. PLoS One, 10(5), e0127852. PMID: 26001114.
Pirastu, N., et al. (2017). GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nature Communications, 8(1), 1584. PMID: 29146897.
β
Yap, C.X., et al. (2018). Dissection of genetic variation and evidence for pleiotropy in male pattern baldness. Nature Communications, 9(1), 5407. PMID: 30573740.
β
β
StrandIQ SNP Marker Count: 10
β
StrandIQ Genes for Trait:
B9D2, EGF, HELLPAR, IGF1, LINC02456, LTA, TGFB1, TMEM91, TNF, VEGFA
β
References:
Abdulzahra, S., Ali, H.H. (2017). Detection of tumor necrosis factor-Ξ± in non-lesional tissues of alopecia areata patients. Biomed Res Ther, 4(3), 702β710. PMID: 31541167.
β
BonafΓ¨, M., et al. (2003). Polymorphic variants of insulin-like growth factor I receptor (IGF1R) are associated with circulating IGF-1 levels and longevity traits. Nature Genetics, 36(7), 720β724. PMID: 15361898.
β
Hoffmann, R., Eicheler, W. (1996). Cytokines and growth factors influence hair growth in vitro. Possible implications for the pathogenesis and treatment of alopecia areata. Archives of Dermatological Research, 288(3), 153β156. PMID: 8967784.
β
Hoffmann, R., Eicheler, W. (1997). Interleukin-1Ξ²-induced inhibition of hair growth in vitro is mediated by cyclic AMP. Journal of Investigative Dermatology, 108(1), 40β42. PMID: 8980284.
β
Inui, S., et al. (2003). Identification of androgen-inducible TGF-Ξ²1 derived from dermal papilla cells as a key mediator in androgenetic alopecia. J Invest Dermatol Symp Proc, 8(1), 69β71. PMID: 12894997.
β
Kim, H., et al. (2017). Insulin-like growth factor-1 increases the expression of inflammatory biomarkers and sebum production in cultured sebocytes. Annals of Dermatology, 29(1), 20β25. PMID: 28223742.
β
Kim, Y.K., Lim, S.A. (2012). VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK. Journal of Investigative Dermatology, 132(2), 382β390. PMID: 21956480.
β
Lee, S., Choi, S. (2018). Elevated TGF-Ξ²1 in aged human scalp correlates with reduced hair follicle stem cell activation. Journal of Dermatological Science, 92(1), 37β44. PMID: 29567183.
Noordam, R., et al. (2016). Low circulating insulin-like growth factor-1 is associated with increased risk of female pattern hair loss in middle-aged women. British Journal of Dermatology, 174(6), 1322β1328. PMID: 26567999.
β
Panchaprateep, R., Asawanonda, P. (2014). Insulin-like growth factor-1: roles in androgenetic alopecia. Experimental Dermatology, 23(3), 216β218. PMID: 24512414.
β
Peus, D., Pittelkow, M.R. (1996). Growth factors in hair organ development and the hair growth cycle. Dermatologic Clinics, 14(4), 559β572. PMID: 9238316.
β
Rahman, R., et al. (2012). [Full details not providedβplease add if needed].
β
Shah, R., Hurley, C.K. (2006). A molecular mechanism for the differential regulation of TGF-Ξ²1 expression due to the common SNP β509C>T (c. β1347C>T). Human Genetics, 120(4), 461β469. PMID: 16972551.
β
Schiavone, V.M., Kwon, O.S. (2023). Genetic variants of epidermal growth factor (EGF) and its receptor (EGFR) associated with male pattern baldness in a multi-ethnic cohort. Journal of the European Academy of Dermatology and Venereology, 37(5), 900β908. PMID: 36698472.
β
Shirakata, Y. (2010). Regulation of epidermal keratinocytes by growth factors. Journal of Dermatological Science, 59(2), 73β80. PMID: 20696100.
β
Smieszek, S.P., et al. (2020). Correlation of age-of-onset of atopic dermatitis with filaggrin loss-of-function variant status. Scientific Reports, 10, 2721. PMID: 32094441.
β
TrΓΌeb, R.M. (2018). Further clinical evidence for the effect of IGF-1 on hair growth and alopecia. Skin Appendage Disorders, 4(2), 90β95. PMID: 29765966.
β
Γnsal, C., et al. (2015). Tumor necrosis factor-alpha in patients with alopecia areata: a caseβcontrol study. International Journal of Dermatology, 54(11), e465βe470. PMID: 26234496.
β
Wang, J.M., Zhang, J.T. (2012). Progress in relevant growth factors promoting the growth of hair follicle. American Journal of Animal and Veterinary Sciences, 7(2), 104β111.
β
Yoon, S.Y., et al. (2011). Induction of hair growth by insulin-like growth factor-1 in 1,763 MHz radiofrequency-irradiated hair follicle cells. PLoS One, 6(12), e28474. PMID: 22164296.
β
β
StrandIQ SNP Marker Count: 5
β
StrandIQ Genes for Trait:
KRT81, KRT83, KRT84, KRT85, KRT86
β
References:
Chabchoub, I., et al. (2012). Novel missense mutation in the KRT81 gene in a Tunisian family with monilethrix. Experimental Dermatology, 21(6), 477β480.
β
Cruz, C.F., Azoia, N.G., Cavaco-Paulo, A. (2017). Interactions between peptide molecules and human hair keratins. International Journal of Biological Macromolecules, 101, 805β814.
β
Djabali, K., Heller, M., Aita, V.M., Christiano, A.M. (2003). A missense mutation in the helix initiation motif of keratin 86 (KRT86) causes monilethrix. Human Genetics, 113(2), 142β147.
β
Djabali, K., Horev, L., Aita, V.M., Vardi, G., Sprecher, E. (2013). Monilethrix: Novel mutations in the helix termination motif of type II hair keratin genes KRT81 and KRT86. Journal of Investigative Dermatology, 133(4), 1202β1204.
β
Genomics England PanelApp. (2024). Hair disorders gene panel (includes KRT81, KRT83, KRT86). Version 1.31.
β
Jensen Disease Resource. (2025). KRT85 downregulation in ectodermal dysplasia and hair structure disorders.
β
Langbein, L., et al. (1999). The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. Journal of Biological Chemistry, 274(13), 19874β19884.
β
Li, M., et al. (2021). Tissue-specific gene expression analysis for human transcriptomics studies: Insights from GTEx dataset. Human Genomics, 15(1), 58.
β
Maβayan Lab, Harmonizome Database. (2025). Expression and downregulation patterns of KRT81, KRT83, KRT86 in alopecia and hair texture studies.
β
Schweizer, J., Langbein, L., Rogers, M.A., Winter, H. (2007). Hair follicle-specific keratins and their diseases. Experimental Cell Research, 313(10), 2010β2020.
β
Shah, Y., et al. (2017). A novel homozygous frameshift mutation in the KRT83 gene underlies progressive symmetric erythrokeratoderma in a Pakistani family. Journal of Medical Genetics, 54(4), 273β277.
β
Szklarczyk, D., et al. (2019). STRING v11: Proteinβprotein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607βD613.
β
van Steensel, M.A., et al. (2015). Novel mutations in the KRT83 gene in Dutch and French families with monilethrix. Experimental Dermatology, 24(3), 222β223.
β
β
StrandIQ SNP Marker Count: 5
β
StrandIQ Genes for Trait:Β
ADAM28, ADAM7-AS1, FAM13A, HJURP, MROH2A
β
References:
Adhikari, K., et al. (2023). Genetics of hair graying with age. Mechanisms of Ageing and Development, 213, 111792.
β
Bian, Y., et al. (2019). Global downregulation of pigmentation-associated genes in human premature hair graying. Experimental and Therapeutic Medicine, 18(2), 1155β1163. PMID: 31316609.
β
Desai, D.D., et al. (2025). Premature hair graying: a multifaceted phenomenon. International Journal of Dermatology, 64(5), 819β829.
PoΕpiech, E., et al. (2020). Exploring the possibility of predicting human head hair greying from DNA using whole-exome and targeted NGS data. BMC Genomics, 21(1), 538.
β
β
StrandIQ SNP Marker Count: 8
β
StrandIQ Genes for Trait:Β
ASL, ERCC8, GJA1, KRT25, KRT71, KRT74, RNU4-35P, WNT10A
β
References:
Adaimy, L., et al. (2007). Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia. American Journal of Human Genetics, 81(4), 821β828. PMID: 17847007.
β
Ahmed, A., et al. (2019). Genetic hair disorders: a review. Dermatology and Therapy (Heidelberg), 9(3), 421β448. PMID: 31332722.
β
Ansar, M., et al. (2015). A homozygous missense variant in type I keratin KRT25 causes autosomal recessive woolly hair. Journal of Medical Genetics, 52(10), 676β680. PMID: 26160856.
β
Basit, S., et al. (2015). Genetics of human isolated hereditary hair loss disorders. Clinical Genetics, 88(3), 203β212. PMID: 25350920.
β
Fujimoto, A., et al. (2012). A missense mutation within the helix initiation motif of the keratin K71 gene underlies autosomal dominant woolly hair/hypotrichosis. Journal of Investigative Dermatology, 132(10), 2342β2349. PMID: 22592156.
β
Rouillard, A.D., et al. (2016). The Harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Nucleic Acids Research, 44(D1), D605βD610. PMID: 26637968.
β
Shimomura, Y., et al. (2010). Autosomal-dominant woolly hair resulting from disruption of keratin 74 (KRT74), a potential determinant of human hair texture. American Journal of Human Genetics, 86(4), 632β638. PMID: 20346438.
β
Wasif, N., et al. (2011). Novel mutations in the keratin-74 (KRT74) gene underlie autosomal dominant woolly hair/hypotrichosis in Pakistani families. Human Genetics, 129(4), 419β424. PMID: 21188418.
β
StrandIQ SNP Marker Count: 8
β
StrandIQ Genes for Trait:Β
ELOVL3, ELOVL5, ELOVL7, FADS1, FADS2, MYRF, PITX3, TMEM258
β
References:
Ahmed, A.A., et al. (2019). Genetic hair disorders: a review. Dermatology and Therapy, 9(3), 421β448. PMID: 31332722.
β
Ge, L., et al. (2003). Identification of the delta-6 desaturase of human sebaceous glands: expression and enzyme activity. Journal of Investigative Dermatology, 120(5), 707β714. PMID: 12713571.
β
Jakobsson, A., et al. (2005). Differential regulation of fatty acid elongation enzymes in mammalian cells. American Journal of Physiology Endocrinology and Metabolism, 289(4), E517βE526. PMID: 15855229.
β
Jakobsson, A., et al. (2006). Fatty acid elongases in mammals: their regulation and roles in metabolism. Progress in Lipid Research, 45(3), 237β249. PMID: 16564093.
β
MihΓ‘ly, J., et al. (2014). Increased FADS2-derived n-6 PUFAs and reduced n-3 PUFAs in plasma of atopic dermatitis patients. Skin Pharmacology and Physiology, 27(5), 242β248. PMID: 24854601.
β
Ponec, M., et al. (2004). The role of epidermal lipids in skin barrier function. Journal of Lipid Research, 45(10), 2002β2010. PMID: 15187147.
β
Seo, J., et al. (2025). The role of lipids in promoting hair growth through HIF-1 signaling pathway. Scientific Reports, 15, 4621.
β
Tarling, E.J., et al. (2008). ATP-binding cassette transporter A1 (ABCA1) and the biogenesis of high-density lipoprotein (HDL). Journal of Lipid Research, 49(5), 901β911. PMID: 18356542.
β
Voulgaridou, G.P., et al. (2020). Elovl elongases as therapeutic targets in dermatology and oncology. Molecular Biology Reports, 47(5), 3793β3804. PMID: 32331365.
β
Westerberg, R., et al. (2004). Role for ELOVL3 and fatty acid chain length in development of hair and skin function. Journal of Biological Chemistry, 279(7), 5621β5629. PMID: 14581464.
β
StrandIQ SNP Marker Count: 2
β
StrandIQ Genes for Trait:Β
EDAR, FGFR2
β
References:
Adhikari, K., et al. (2016). A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nature Communications, 7, 10815. PMID: 26926045.
β
Fujimoto, A., et al. (2008). A replication study confirmed the EDAR gene to be a major contributor to population differentiation regarding head hair thickness in Asia. Human Genetics, 124(2), 179β185. PMID: 18704500.
β
Fujimoto, A., et al. (2008). A scan for genetic determinants of human hair morphology: EDAR is associated with Asian hair thickness. Human Molecular Genetics, 17(6), 835β843. PMID: 18065779.
β
Medland, S.E., et al. (2009). Common variants in the trichohyalin gene are associated with straight hair in Europeans. American Journal of Human Genetics, 85(5), 750β755. PMID: 19896111.
β
Mou, C., et al. (2008). Enhanced ectodysplasin-A receptor (EDAR) signaling alters multiple fiber characteristics to produce the East Asian hair form. Human Mutation, 29(12), 1405β1411. PMID: 18561327.
β
Riddell, J., et al. (2020). Characterisation of a second gain of function EDAR variant, encoding EDAR380R, in East Asia. European Journal of Human Genetics, 28(12), 1694β1702. PMID: 32499598.
β
Shimomura, Y., Christiano, A.M. (2010). Biology and genetics of hair. Annual Review of Genomics and Human Genetics, 11, 109β132. PMID: 20590427.
β
β
StrandIQ SNP Marker Count: 4
β
StrandIQ Genes for Trait:Β
ATP1B2, REEP3, SAT2, SHBG
β
References:
Borgia, F., et al. (2004). Correlation between endocrinological parameters and acne severity in women. Acta Dermato-Venereologica, 84(3), 201β204. PMID: 15257533.
β
Del Rosso, J.Q., Kircik, L. (2024). The cutaneous effects of androgens and androgen-mediated sebum production and their pathophysiologic and therapeutic importance in acne vulgaris. Journal of Dermatological Treatment, 35(1), 2298878. PMID: 38192024.
β
Makrantonaki, E., et al. (2011). An update on the role of the sebaceous gland in the pathogenesis of acne. Dermatoendocrinology, 3(1), 41β49. PMID: 21519409.
β
β
StrandIQ SNP Marker Count: 5
β
StrandIQ Genes for Trait:Β
DSP, DSP-AS1, LTA, SNRNP48, TNF
β
References:
Chong, A.C., Visitsunthorn, K., Ong, P.Y. (2022). Genetic/environmental contributions and immune dysregulation in children with atopic dermatitis. Journal of Asthma and Allergy, 15, 1681β1700. PMID: 36447957.
β
Favre, B., BegrΓ©, N., Borradori, L. (2018). A recessive mutation in the DSP gene linked to cardiomyopathy, skin fragility and hair defects impairs the binding of desmoplakin to epidermal keratins and the muscle-specific intermediate filament desmin. British Journal of Dermatology, 179(3), 797β799. PMID: 29878302.
β
Green, K.J., Jaiganesh, A., Broussard, J.A. (2019). Desmosomes: essential contributors to an integrated intercellular junction network. F1000Research, 8, F1000 Faculty Rev-2150. PMID: 31942240.
β
Lee, J.Y.W., McGrath, J.A. (2021). Mutations in genes encoding desmosomal proteins: spectrum of cutaneous and extracutaneous abnormalities. British Journal of Dermatology, 184(4), 596β605. PMID: 32593191.
β
McAleer, M.A., et al. (2015). Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. Journal of Allergy and Clinical Immunology, 136(5), 1268β1276. PMID: 26073755.
β
Polivka, L., et al. (2018). Epithelial barrier dysfunction in desmoglein-1 deficiency. Journal of Allergy and Clinical Immunology, 142(2), 702β706.e7. PMID: 29705242.
β
Stappers, M.H., et al. (2014). Polymorphisms in cytokine genes IL6, TNF, IL10, IL17A and IFNG influence susceptibility to complicated skin and skin structure infections. European Journal of Clinical Microbiology and Infectious Diseases, 33(12), 2267β2274. PMID: 25022448.
β
Whittock, N.V., et al. (2002). Compound heterozygosity for non-sense and mis-sense mutations in desmoplakin underlies skin fragility/woolly hair syndrome. Journal of Investigative Dermatology, 118(2), 232β238. PMID: 11841538.
β
β
StrandIQ SNP Marker Count: 15
β
StrandIQ Genes for Trait:Β
ADAD1, IFNG, IFNG-AS1, IL10, IL13, IL17A, IL18, IL19, IL6, IL6-AS1, LTA, STEAP1B, TEX12, TH2LCRR, TNF
β
References:
Colagiovanni, A., et al. (2016). Role of TNF-Ξ± polymorphism in patients with nickel allergy: a marker of susceptibility to contact polysensitization. European Review for Medical and Pharmacological Sciences, 20(12), 2663β2666. PMID: 27383320.
β
de Jongh, C.M., et al. (2007). Polymorphisms in interleukin-1 gene influence stratum corneum IL-1Ξ± concentration in chronic irritant contact dermatitis. Contact Dermatitis, 58(5), 263β268. PMID: 18416755.
β
GΓΆtz, A., et al. (2003). Cytokine gene polymorphisms in allergic contact dermatitis. Contact Dermatitis, 48(2), 93β98. PMID: 12694213.
β
Khatri, R., et al. (2015). Genetic endowment of proinflammatory cytokine TNF-Ξ± (β308 G>A) polymorphism to airborne contact dermatitis in an Indian cohort. International Journal of Dermatology, 54(2), 179β184. PMID: 24673179.
β
Landeck, L., et al. (2012). Impact of tumour necrosis factor-Ξ± polymorphisms on irritant contact dermatitis. Contact Dermatitis, 66(4), 221β227. PMID: 22404198.
β
Wang, B.J., et al. (2007). Tumor necrosis factor-alpha promoter and GST-T1 genotype predict skin allergy to chromate in cement workers in Taiwan. Contact Dermatitis, 57(5), 309β315. PMID: 17937745.
β
β
StrandIQ SNP Marker Count: 3
β
StrandIQ Genes for Trait:Β
AQP3, CLDN1, P3H2-AS1
β
References:
Blaydon, D.C., & Kelsell, D.P. (2014). Defective channels lead to an impaired skin barrier. Journal of Cell Science, 127(20), 4343β4350. PMID: 25179597.
β
De Benedetto, A., et al. (2009). Variants in the tight junction gene, claudin-1, are associated with atopic dermatitis in two American populations and may contribute to skin barrier dysfunction. Journal of Allergy and Clinical Immunology, 123(2), S150.
β
Draelos, Z. (2012). Aquaporins: an introduction to a key factor in the mechanism of skin hydration. Journal of Clinical and Aesthetic Dermatology, 5(7), 53β56. PMID: 22798977.
β
Kim, J.E., et al. (2010). Tight junction defects in patients with atopic dermatitis. Journal of Allergy and Clinical Immunology, 126(4), 667β670.e3. PMID: 20659410.
β
Naval, J., et al. (2014). Genetic polymorphisms and skin aging: the identification of population genotypic groups holds potential for personalized treatments. Clinical, Cosmetic and Investigational Dermatology, 7, 207β214. PMID: 25061327.
β
Runswick, S.K., et al. (2001). Decreased CLDN1 expression leads to increased transepidermal water loss and skin dehydration in aged human skin. Journal of Dermatological Science, 81(3), 145β151. PMID: 26336250.
β
Yu, H.S., et al. (2015). Claudin-1 polymorphism modifies the effect of mold exposure on the development of atopic dermatitis and production of IgE. Journal of Allergy and Clinical Immunology, 136(4), 996β998.e8. PMID: 26220782.
β
β
StrandIQ SNP Marker Count: 14
β
StrandIQ Genes for Trait:Β
AFG3L1P, CASP8, DBNDD1, ERCC2, FLACC1, IRF4, KLC3, MC1R, NCOA6, NTM, OCA2, PIGU, TUBB3, TYR
β
References:
Carreras, A., et al. (2023). Skin phototype and disease: a comprehensive genetic approach to pigmentary traits pleiotropy using PRS in the GCAT cohort. Genes (Basel), 14(1), 149. PMID: 36672889.
β
Duffy, D.L., et al. (2018). Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways. Nature Communications, 9(1), 4774. PMID: 30429480.
β
FarrΓ©, X., et al. (2023). Skin phototype and disease: a comprehensive genetic approach to pigmentary traits pleiotropy using PRS in the GCAT cohort. Genes (Basel), 14(1), 149. PMID: 36672889.
β
GalvΓ‘n-FemenΓa, I., et al. (2018). Multitrait genome association analysis identifies new susceptibility genes for human anthropometric variation in the GCAT cohort. Journal of Medical Genetics, 55(11), 765β778. PMID: 30166351.
β
Landi, M.T., et al. (2020). Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nature Genetics, 52(5), 494β504. PMID: 32341527.
β
Liyanage, U.E., et al. (2019). Combined analysis of keratinocyte cancers identifies novel genome-wide loci. Human Molecular Genetics, 28(18), 3148β3160. PMID: 31174203.
β
Nan, H., et al. (2009). Genome-wide association study of tanning phenotype in a population of European ancestry. Journal of Investigative Dermatology, 129(9), 2250β2257. PMID: 19340012.
β
Pietzner, M., et al. (2021). Mapping the proteo-genomic convergence of human diseases. Science, 374(6569), eabj1541. PMID: 34648354.
Sakaue, S., et al. (2021). A cross-population atlas of genetic associations for 220 human phenotypes. Nature Genetics, 53(10), 1415β1424. PMID: 34594039.
β
Sulem, P., et al. (2007). Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature Genetics, 39(12), 1443β1452. PMID: 17952075.
β
Verma, A., et al. (2024). Diversity and scale: genetic architecture of 2068 traits in the VA Million Veteran Program. Science, 385(6706), eadj1182. PMID: 39024449.
β
Visconti, A., et al. (2018). Genome-wide association study in 176,678 Europeans reveals genetic loci for tanning response to sun exposure. Nature Communications, 9(1), 1684. PMID: 29739929.
β
Zhang, M., et al. (2013). Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. Human Molecular Genetics, 22(14), 2948β2959. PMID: 23548203.
β
StrandIQ SNP Marker Count: 1
β
StrandIQ Genes for Trait:
COL1A1
β
References:
β
FrancΓ¨s, M.P., et al. (2024). Utilising SNP association analysis as a prospective approach for personalising androgenetic alopecia treatment. Dermatology and Therapy (Heidelberg), 14(4), 971β981. PMID: 38555553.
β
Geusens, B., & Haykal, D. (2025). Genetic profiling and precision skin care: a review. Frontiers in Genetics, 16, 1559510. PMID: 40529811.
β
Nistico, S.P., et al. (2018). Genetic customization of anti-aging treatments. Journal of Clinical and Experimental Dermatology Research, 9, 443. PMID: not available; doi: 10.4172/2155-9554.1000443.
β
Sepetiene, R., et al. (2023). Genetical signatureβAn example of a personalized skin aging investigation with possible implementation in clinical practice. Journal of Personalized Medicine, 13(9), 1305. PMID: 37763073.
β
β
StrandIQ SNP Marker Count: 4
β
StrandIQ Genes for Trait:Β
MMP1, MMP9, SLC12A5-AS1, WTAPP1
β
References:
Geusens, B., & Haykal, D. (2025). Genetic profiling and precision skin care: a review. Frontiers in Genetics, 16, 1559510. PMID: 40529811.
β
Haykal, D. (2025). Leveraging single nucleotide polymorphism profiling for precision skin care: How SNPs shape individual responses in cosmetic dermatology. Journal of Cosmetic Dermatology, 24(1), e16750. PMID: 39737554.
β
Naval, J., et al. (2014). Genetic polymorphisms and skin aging: the identification of population genotypic groups holds potential for personalized treatments. Clinical, Cosmetic and Investigational Dermatology, 7, 207β214. PMID: 25061327.
β
Sepetiene, R., et al. (2023). Genetical signatureβAn example of a personalized skin aging investigation with possible implementation in clinical practice. Journal of Personalized Medicine, 13(9), 1305. PMID: 37763073.
β
β
StrandIQ SNP Marker Count: 5
β
StrandIQ Genes for Trait:Β
AGER, GLO1, MIR6833, PBX2, RNF5
β
References:
Adams, J.N., et al. (2016). Genetic analysis of advanced glycation end products in the DHS MIND study. Gene, 584(2), 173β179. PMID: 26915486.
Peculis, R., et al. (2013). Identification of glyoxalase 1 polymorphisms associated with enzyme activity. Gene, 515(1), 140β143. PMID: 23201419.
Vollenbrock, C.E., et al. (2022). Genome-wide association study identifies novel loci associated with skin autofluorescence in individuals without diabetes. BMC Genomics, 23(1), 840. PMID: 36536295.
β
β
StrandIQ SNP Marker Count: 3
β
StrandIQ Genes for Trait:Β
EPHX1, NQO1, NQO1-DT
β
References:
Hedegaard, N., et al. (2016). A single nucleotide polymorphism in the EPHX1 gene, Tyr113His, impedes detoxification of airborne pollutants. Environmental Health Perspectives, 124(3), 310β316. PMID: 26767022.
β
Jamieson, D., et al. (2007). NQO1 C609T variant lowers enzyme activity in epithelial tissues, potentially compromising detoxification of quinone-based pollutants. Clinical Cancer Research, 13(5), 1584β1590. PMID: 17332305.
β
Ross, D. (2004). The NQO1 2 polymorphism (Pro187Ser, c.609C>T) reduces NQO1 activity, increasing vulnerability to oxidative damage from environmental toxins. Drug Metabolism Reviews, 36(3β4), 639β654. PMID: 15554240.
β
Tung, K.Y., et al. (2011). Microsomal epoxide hydrolase genotypes/diplotypes, traffic air pollution, and childhood asthma. Chest, 139(4), 839β848. PMID: 20966035.
β
β
StrandIQ SNP Marker Count: 3
β
StrandIQ Genes for Trait:
CAT, NFE2L2, SOD2
β
References:
Bravard, A., et al. (2017). Promoter variant in the CAT gene is associated with vitiligo in a Chinese population. Journal of Dermatology, 44(4), 375β383. PMID: 28412841.
β
Du, F., et al. (2024). Oxidative stress in hair follicle development and hair growth: signalling pathways, intervening mechanisms and potential of natural antioxidants. Journal of Cellular and Molecular Medicine, 28(12), e18486. PMID: 38923380.
β
Korff, S., Schmidt, H., Braun, M., Peters, S. (2016). Population genetics of the CAT β262C>T polymorphism (rs1001179) and its impact on catalase activity. Bulletin of Experimental Biology and Medicine, 161(6), 755β759. PMID: 27810954.
β
Krishnamurthy, H.K., et al. (2024). Inside the genome: understanding genetic influences on oxidative stress. Frontiers in Genetics, 15, 1397352. PMID: 38983269.
β
Papaccio, F., et al. (2022). Focus on the contribution of oxidative stress in skin aging. Antioxidants (Basel), 11(6), 1121. PMID: 35740018.
β
Singh, A., et al. (2019). Functional polymorphisms in NFE2L2 (NRF2) influence oxidative stress response and are implicated in skin-related disorders. Environment International, 126, 1β10. PMID: 30684348.
β
Treiber, N., et al. (2012). The role of manganese superoxide dismutase (SOD2) in skin aging. Dermatoendocrinology, 4(3), 232β235. PMID: 23467442.
β
Velarde, M.C., et al. (2012). Mitochondrial oxidative stress caused by SOD2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging (Albany NY), 4(3), 3β12. PMID: 22865113.
β
Xue, J., et al. (2021). NF-E2-related factor 2 (Nrf2) ameliorates radiation-induced skin injury. Frontiers in Oncology, 11, 680058. PMID: 34568011.
β
β
StrandIQ SNP Marker Count: 2
β
StrandIQ Genes for Trait:
CCDST, FLG
β
References:
Irvine, A.D., McLean, W.H.I., Leung, D.Y.M. (2011). Filaggrin loss-of-function variants are associated with atopic dermatitis and a defective skin barrier. Journal of Allergy and Clinical Immunology, 127(3), 692β699.e1. PMID: 21334333.
β
Palmer, C.N.A., et al. (2006). Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genetics, 38(4), 441β446. PMID: 16682950.
β
Sandilands, A., et al. (2007). Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nature Genetics, 39(5), 650β654. PMID: 17460637.
β
Smieszek, S.P., et al. (2020). Correlation of age-of-onset of atopic dermatitis with filaggrin loss-of-function variant status. Scientific Reports, 10, 2721. PMID: 32094441.
β
Stawczyk-Macieja, M., et al. (2015). Genetic background of skin barrier dysfunction in the pathogenesis of psoriasis vulgaris. PostΔpy Dermatologii i Alergologii, 32(2), 123β126. PMID: 26015782.
β
β
StrandIQ SNP Marker Count: 9
β
StrandIQ Genes for Trait:Β
COL27A1, FPASL, LEF1, MCPH1, PSORS1C1, REL-DT, SLC39A11, YWHAG, ZBTB38
β
References:Β
β
Karakadze, M.A., Hirt, P.A., Wikramanayake, T.C. (2018). The genetic basis of seborrhoeic dermatitis: a review. Journal of the European Academy of Dermatology and Venereology, 32(4), 529β536. PMID: 29152796.
β
Sanders, M.G.H., et al. (2018). The genetics of seborrheic dermatitis: a candidate gene approach and pilot genome-wide association study. Journal of Investigative Dermatology, 138(4), 991β993. PMID: 29203360.
β
β
StrandIQ SNP Marker Count: 7
β
StrandIQ Genes for Trait:Β
CYP26B1, FFAR4, LINC01036, MACROD2, PNPLA3, RBP4, TTR
β
References:Β
Al-Khelaifi, F., et al. (2019). Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance. Scientific Reports, 9(1), 19889. PMID: 31882771.
β
Behar, D.M., et al. (2014). Identification of a novel mutation in the PNLIP gene in two brothers with congenital pancreatic lipase deficiency. Journal of Lipid Research, 55(2), 307β312. PMID: 24262094.
β
Borel, P., et al. (2017). Genetic variations associated with vitamin A status and vitamin A bioavailability. Nutrients, 9(3), 246. PMID: 28282870.
β
Casey, J., et al. (2011). First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, and coloboma: a new dimension to the STRA6 phenotype. Human Mutation, 32(12), 1417β1426. PMID: 21901792.
β
Chen, Y., et al. (2023). Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nature Genetics, 55(1), 44β53. PMID: 36635386.
β
Ferrucci, L., et al. (2009). Common variation in the beta-carotene 15,15'-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. American Journal of Human Genetics, 84(2), 123β133. PMID: 19185284.
β
FransΓ©n, K., et al. (2013). Polymorphism in the retinoic acid metabolizing enzyme CYP26B1 and the development of Crohnβs disease. PLOS ONE, 8(8), e72739. PMID: 23977180.
β
Hysi, P.G., et al. (2022). Metabolome genome-wide association study identifies 74 novel genomic regions influencing plasma metabolites levels. Metabolites, 12(1), 61. PMID: 35050183.
β
Khan, K.N., et al. (2017). Vitamin A deficiency due to bi-allelic mutation of RBP4: There's more to it than meets the eye. Ophthalmic Genetics, 38(5), 465β466. PMID: 27892788.
β
Lietz, G., et al. (2012). Single nucleotide polymorphisms upstream from the Ξ²-carotene 15,15'-monoxygenase gene influence provitamin A conversion efficiency in female volunteers. Journal of Nutrition, 142(1), 161Sβ165S. PMID: 22113863.
β
Mondul, A.M., et al. (2011). Genome-wide association study of circulating retinol levels. Human Molecular Genetics, 20(23), 4724β4731. PMID: 21878437.
β
Pietzner, M., et al. (2021). Mapping the proteo-genomic convergence of human diseases. Science, 374(6569), eabj1541. PMID: 34648354.
β
Suzuki, M., et al. (2021). Disproportionate vitamin A deficiency in women of specific ethnicities linked to differences in allele frequencies of vitamin A-related polymorphisms. Nutrients, 13(6), 1743.
β
Suzuki, M., et al. (2022). Genetic variations of vitamin A-absorption and storage-related genes, and their potential contribution to vitamin A deficiency risks among different ethnic groups. Frontiers in Nutrition, 9, 861619. PMID: 35571879.
β
Thompson, D., et al. (2001). Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nature Genetics, 28(2), 123β124. PMID: 11431706.
β
Yin, X., et al. (2022). Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nature Communications, 13(1), 1644. PMID: 35347128.
β
Yousri, N.A., et al. (2018). Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. Nature Communications, 9(1), 333. PMID: 29348451.
β
Zanon-Moreno, V., et al. (2011). Association between a SLC23A2 gene variation, plasma vitamin C levels, and risk of glaucoma in a Mediterranean population. Molecular Vision, 17, 2997β3004. PMID: 22171153.
β
β
StrandIQ SNP Marker Count: 33
β
StrandIQ Genes for Trait:Β
AKR1B10, BLVRA, CLCN6, COA1, COL11A2, FASTKD3, FMO2, GPATCH4, GRHPR, GSTP1, HSD17B11, HSD17B14, JAZF1, KIF1B, LINC01337, MIR4276, MROH9, MTHFD1, MTRR, NAXE, NOS1, PLEKHA4, PPFIBP2, PTGR3, RXRB, STK17A, TMEM255A, TTC24, VN2R1P, Y_RNA, ZNF20, ZNF788P, ZRANB1
β
References:Β
Ames, B.N., et al. (2002). High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): relevance to genetic disease and polymorphisms. American Journal of Clinical Nutrition, 75(4), 616β658. PMID: 11916749.
β
Amini, F., et al. (2013). 3'-UTR variations and G6PD deficiency. Journal of Human Genetics, 58(4), 189β194. PMID: 23389243.
β
da Rocha, J., et al. (2021). G6PD variant distribution in sub-Saharan Africa and potential risks of using chloroquine/hydroxychloroquine based treatments for COVID-19. Pharmacogenomics Journal, 21(6), 649β656. PMID: 32577690.
β
Hu, L., et al. (2015). Secondary NAD+ deficiency in the inherited defect of glutamine synthetase. Journal of Inherited Metabolic Disease, 38(6), 1075β1083. PMID: 25896882.
β
Kleta, R., et al. (2004). Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nature Genetics, 36(9), 999β1002. PMID: 15286787.
β
Seow, H.F., et al. (2004). Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nature Genetics, 36(9), 1003β1007. PMID: 15286788.
β
Zapata-PΓ©rez, R., et al. (2021). NAD+ homeostasis in human health and disease. EMBO Molecular Medicine, 13(7), e13943. PMID: 34041853.
β
β
StrandIQ SNP Marker Count: 21
β
StrandIQ Genes for Trait:Β
ABHD1, ACBD4, AGPAT1, CHKB, CPT1B, CPT1C, DCAKD, ECI2, ECI2-DT, EGFL8, HLA-DMB, LCLAT1, MIR6721, NMT1, PLCD3, PPT2, PREB, PRSS53, STX4, TEX56P, VKORC1
β
References:Β
Feofanova, E.V., et al. (2020). A genome-wide association study discovers 46 loci of the human metabolome in the Hispanic Community Health Study/Study of Latinos. American Journal of Human Genetics, 107(5), 849β863. PMID: 33031748.
β
Rhee, E.P., et al. (2013). A genome-wide association study of the human metabolome in a community-based cohort. Cell Metabolism, 18(1), 130β143. PMID: 23823483.
β
β
StrandIQ SNP Marker Count: 13
β
StrandIQ Genes for Trait:Β
ABHD1, ACBD4, AGPAT1, CHKB, CPT1B, CPT1C, DCAKD, ECI2, ECI2-DT, EGFL8, HLA-DMB, LCLAT1, MIR6721, NMT1, PLCD3, PPT2, PREB, PRSS53, STX4, TEX56P, VKORC1ALPL, BHMT, C1orf167, CBS, DHFR, DMGDH, MSH3, MTHFD1, MTHFR, MTRR, NBPF3, PFN1P10, PON1
β
References:Β
Eussen, S.J., et al. (2010). Plasma vitamins B2, B6, and B12, and related genetic variants as predictors of colorectal cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 19(10), 2549β2561. PMID: 20813848.
β
Hazra, A., et al. (2009). Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Human Molecular Genetics, 18(23), 4677β4687. PMID: 19744961.
β
Keene, K.L., et al. (2014). Genetic associations with plasma B12, B6, and folate levels in an ischemic stroke population from the Vitamin Intervention for Stroke Prevention (VISP) Trial. Frontiers in Public Health, 2, 112. PMID: 25147783.
β
Li, Q., et al. (2013). Role of one-carbon metabolizing pathway genes and gene-nutrient interaction in the risk of non-Hodgkin lymphoma. Cancer Causes & Control, 24(10), 1875β1884. PMID: 23913011.
β
Loohuis, L.M., et al. (2018). The alkaline phosphatase (ALPL) locus is associated with B6 vitamer levels in CSF and plasma. Genes (Basel), 10(1), 8. PMID: 30583557.
β
Shih, V.E., et al. (1995). A missense mutation (I278T) in the cystathionine beta-synthase gene prevalent in pyridoxine-responsive homocystinuria and associated with mild clinical phenotype. American Journal of Human Genetics, 57(1), 34β39. PMID: 7611293.
β
Tanaka, T., et al. (2009). Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. American Journal of Human Genetics, 84(4), 477β482. PMID: 19303062.
β
StrandIQ SNP Marker Count: 45
β
StrandIQ Genes for Trait:Β
ADH4, ANKRD28, APOH, BTD, C3orf20, CATSPER2, CHPT1, COL6A4P1, FADS1, FADS2, FGD5, GALNT15, GCKR, GNPTAB, HPR, IMPDH1P8, JMJD1C, NR2C2, NRTN, OXNAD1, PLG, RFTN1, RPS3AP53, SH3BP5
β
References:Β
Borsatto, T., et al. (2014). Biotinidase deficiency: clinical and genetic studies of 38 Brazilian patients. BMC Medical Genetics, 15, 96. PMID: 25174816.
β
Hsu, R.H., et al. (2019). Genotypic and phenotypic correlations of biotinidase deficiency in the Chinese population. Orphanet Journal of Rare Diseases, 14(1), 6. PMID: 30616616.
β
Liu, Z., et al. (2018). Clinical features, BTD gene mutations, and their functional studies of eight symptomatic patients with biotinidase deficiency from Southern China. American Journal of Medical Genetics Part A, 176(3), 589β596. PMID: 29359854.
β
Loya, H., et al. (2025). A scalable variational inference approach for increased mixed-model association power. Nature Genetics, 57(2), 461β468. PMID: 39789286.
β
Oz, O., et al. (2021). BTD gene mutations in biotinidase deficiency: genotypeβphenotype correlation. Journal of the College of Physicians and Surgeons Pakistan, 31(7), 780β785. PMID: 34271776.
β
Pietzner, M., et al. (2021). Mapping the proteo-genomic convergence of human diseases. Science, 374(6569), eabj1541. PMID: 34648354.
β
β
StrandIQ SNP Marker Count: 35
β
StrandIQ Genes for Trait:Β
ABCD4, ACTL9, BHMT, BHMT2, C4orf51, CBS, CD320, CENPQ, CFAP299, CLCN6, CLYBL, CUBN, DMGDH, FASTKD3, FGF21, FUT1, FUT2, FUT3, FUT6, LINC01237, LINC01880, LINC01881, MMAA, MMUT, MS4A3, MTHFD1, MTHFR, MTR, MTRR, NCOA4P3, PRELID2, RFKP1, RGS7, TCN1, TRDMT1
β
References:Β
Dib, M.J., et al. (2022). Associations of genetically predicted vitamin B12 status across the phenome. Nutrients, 14(23), 5031. PMID: 36501061.
β
Grarup, N., et al. (2013). Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets. PLoS Genetics, 9(6), e1003530. PMID: 23754956.
β
Keene, K.L., et al. (2014). Genetic associations with plasma B12, B6, and folate levels in an ischemic stroke population from the Vitamin Intervention for Stroke Prevention (VISP) Trial. Frontiers in Public Health, 2, 112. PMID: 25147783.
β
Niforou, A., et al. (2020). Genetic variants shaping inter-individual differences in response to dietary intakesβa narrative review of the case of vitamins. Frontiers in Nutrition, 7, 558598. PMID: 33335908.
β
Shivkar, R.R., et al. (2022). Association of MTHFR C677T (rs1801133) and A1298C (rs1801131) polymorphisms with serum homocysteine, folate and vitamin B12 in patients with young coronary artery disease. Indian Journal of Clinical Biochemistry, 37(2), 224β231. PMID: 35463099.
β
Surendran, S., et al. (2018). An update on vitamin B12-related gene polymorphisms and B12 status. Genes & Nutrition, 13, 2. PMID: 29445423.
β
Tanaka, T., et al. (2009). Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. American Journal of Human Genetics, 84(4), 477β482. PMID: 19303062.
β
β
StrandIQ SNP Marker Count: 14
β
StrandIQ Genes for Trait:Β
BCAS3, FADS1, FADS2, GSTA1, GSTA11P, GSTA6P, LINC01229, MAFTRR, MZB1, RGS14, SIL1, SLC23A1, SLC23A2, TBX2-AS1
β
References:Β
Cahill, L.E., El-Sohemy, A. (2009). Vitamin C transporter gene polymorphisms, dietary vitamin C and serum ascorbic acid. Journal of Nutrigenetics and Nutrigenomics, 2(6), 292β301. PMID: 20588054.
β
Duell, E.J., et al. (2013). Vitamin C transporter gene (SLC23A1 and SLC23A2) polymorphisms, plasma vitamin C levels, and gastric cancer risk in the EPIC cohort. Genes & Nutrition, 8(6), 549β560. PMID: 23737080.
β
Horska, A., et al. (2011). Vitamin C levels in blood are influenced by polymorphisms in glutathione S-transferases. European Journal of Nutrition, 50(6), 437β446. PMID: 21152927.
β
Mattila, M., et al. (2020). Plasma ascorbic acid and the risk of islet autoimmunity and type 1 diabetes: the TEDDY study. Diabetologia, 63(2), 278β286. PMID: 31728565.
β
Ratajczak, A.E., et al. (2020). Vitamin C deficiency and the risk of osteoporosis in patients with an inflammatory bowel disease. Nutrients, 12(8), 2263. PMID: 32751086.
β
Ravindran, R.D., et al. (2019). Genetic variants in a sodium-dependent vitamin C transporter gene and age-related cataract. British Journal of Ophthalmology, 103(9), 1223β1227. PMID: 30442817.
β
Senthilkumari, S., et al. (2014). Polymorphisms in sodium-dependent vitamin C transporter genes and plasma, aqueous humor and lens nucleus ascorbate concentrations in an ascorbate depleted setting. Experimental Eye Research, 124, 24β30. PMID: 24815519.
β
Timpson, N.J., et al. (2010). Genetic variation at the SLC23A1 locus is associated with circulating concentrations of L-ascorbic acid (vitamin C): evidence from 5 independent studies with >15,000 participants. American Journal of Clinical Nutrition, 92(2), 375β382. PMID: 20519558.
β
Yu, Z., et al. (2022). Association between circulating antioxidants and longevity: insight from Mendelian randomization study. BioMed Research International, 2022, 4012603. PMID: 35132376.
β
Zheng, J.S., et al. (2021). Plasma vitamin C and type 2 diabetes: genome-wide association study and Mendelian randomization analysis in European populations. Diabetes Care, 44(1), 98β106. PMID: 33203707.
β
β
StrandIQ SNP Marker Count: 79
β
StrandIQ Genes for Trait:Β
ACTE1P, ALDH1A2, AMDHD1, APOC1, APOC1P1, APOE, ARNT, BUD13-DT, CCDC93, CD248, CELSR2, CETP, COG5, CTXND2, CYB561, CYP2R1, DHCR7, DHCR7-DT, DOCK7, DSG1, DSG1-AS1, EBF2, GATA4, GC, GCKR, GNGT1, GPR22, HMG20A, HSD17B11, HTR5BP, KIRREL2, KLK10, KLK9, LINC00536, LINC01595, LIPC, LIPC-AS1, LMCD1, LMCD1-AS1, MAT1A, METTL25, MORN1, MTARC1, NADSYN1, NCAN, NF1P12, NPAS2, NPHS1, PADI1, PDE3B, PEAK1, PSMA1, PSRC1, RER1, RNA5SP358, RNA5SP359, RPL17P11, RPL39P34, SLCO1B1, SMARCA4, SMCP, SULT2A1, TFDP2, TM6SF2, TNFAIP8, TPRX2, UGT1A10, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT2B7, WIPI1, XPNPEP3, ZNF701, ZNF808, ZPR1
β
References:
Ahn, J., et al. (2010). Genome-wide association study of circulating vitamin D levels. Human Molecular Genetics, 19(13), 2739β2745. PMID: 20418485.
β
Amin, H.A., Drenos, F. (2021). No evidence that vitamin D is able to prevent or affect the severity of COVID-19 in individuals with European ancestry: a Mendelian randomisation study of open data. BMJ Nutrition, Prevention & Health, 4(1), 42β48. PMID: 34308111.
β
Anderson, D., et al. (2014). Genome-wide association study of vitamin D levels in children: replication in the Western Australian Pregnancy Cohort (Raine) study. Genes and Immunity, 15(8), 578β583. PMID: 25208829.
β
Berry, D.J., et al. (2012). Evaluation of genetic markers as instruments for Mendelian randomization studies on vitamin D. PLoS One, 7(5), e37465. PMID: 22629401.
β
Jiang, X., et al. (2018). Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nature Communications, 9(1), 260. PMID: 29343764.
β
Kim, Y.A., et al. (2021). Unveiling genetic variants underlying vitamin D deficiency in multiple Korean cohorts by a genome-wide association study. Endocrinology and Metabolism (Seoul), 36(6), 1189β1200, 1241. PMID: 34852423.
β
Lasky-Su, J., et al. (2012). Genome-wide association analysis of circulating vitamin D levels in children with asthma. Human Genetics, 131(9), 1495β1505. PMID: 22673963.
β
Manousaki, D., et al. (2020). Genome-wide association study for vitamin D levels reveals 69 independent loci. American Journal of Human Genetics, 106(3), 327β337. PMID: 32059762.
β
Moy, K.A., et al. (2014). Genome-wide association study of circulating vitamin D-binding protein. American Journal of Clinical Nutrition, 99(6), 1424β1431. PMID: 24740207.
β
Wang, T.J., et al. (2010). Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet, 376(9736), 180β188. PMID: 20541252.
β
β
StrandIQ SNP Marker Count: 19
β
StrandIQ Genes for Trait:Β
ALDH1A2, APOA5, BUD13-DT, CD36, CETP, CYP4F2, GGH, LIPC, LIPC-AS1, NCAN, NKAIN3, RNF215, SCARB1, SEC14L2, SF3A1, SLC39A1P1, TM6SF2, TTPA, ZPR1
β
References:
Al-Khelaifi, F., et al. (2019). Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance. Scientific Reports, 9(1), 19889. PMID: 31882771.
β
Benjamin, E.J., et al. (2013). Imputation of variants from the 1000 Genomes Project modestly improves known associations and can identify low-frequency variant-phenotype associations undetected by HapMap based imputation. PLoS One, 8(5), e64343. PMID: 23696881.
β
Borel, P., Desmarchelier, C. (2016). Genetic variations involved in vitamin E status. International Journal of Molecular Sciences, 17(12), 2094. PMID: 27983595.
β
Borel, P., Moussa, M., Reboul, E., et al. (2007). Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism. Journal of Nutrition, 137(12), 2653β2659. PMID: 18029479.
β
Civelek, M., Podszun, M.C. (2022). Genetic factors associated with response to vitamin E treatment in NAFLD. Antioxidants (Basel), 11(7), 1284. PMID: 35883775.
β
Ferrucci, L., et al. (2009). Common variation in the beta-carotene 15,15'-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. American Journal of Human Genetics, 84(2), 123β133. PMID: 19185284.
β
GalmΓ©s, S., Serra, F., Palou, A. (2018). Vitamin E metabolic effects and genetic variants: a challenge for precision nutrition in obesity and associated disturbances. Nutrients, 10(12), 1919. PMID: 30518135.
β
Lecompte, S., et al. (2011). Polymorphisms in the CD36/FAT gene are associated with plasma vitamin E concentrations in humans. American Journal of Clinical Nutrition, 93(3), 644β651. PMID: 21228269.
β
Major, J.M., et al. (2011). Genome-wide association study identifies common variants associated with circulating vitamin E levels. Human Molecular Genetics, 20(19), 3876β3883. PMID: 21729881.
β
Niforou, A., Konstantinidou, V., Naska, A. (2020). Genetic variants shaping inter-individual differences in response to dietary intakesβa narrative review of the case of vitamins. Frontiers in Nutrition, 7, 558598. PMID: 33335908.
β
β
StrandIQ SNP Marker Count: 9
β
StrandIQ Genes for Trait:Β
ANK2, ANK2-AS1, CCDC27, LRRC47, OR7A5, OR7C1, SELENBP1, SHISA9, SMIM1
β
References:
Flatby, H. M., et al. (2023). Circulating levels of micronutrients and risk of infections: a Mendelian randomization study. BMC Medicine, 21, 84. PMID: 36882828.
β
Huang, T., & Lu, F. (2024). Genetically predicted circulating concentrations of micronutrients and risk of hypertensive disorders of pregnancy: a Mendelian randomization study. Archives of Gynecology and Obstetrics, 310, 1019β1025. PMID: 38194093.
β
JΓ€ger, S., et al. (2022). Blood copper and risk of cardiometabolic diseases: a Mendelian randomization study. Human Molecular Genetics, 31(5), 783-791. PMID: 34523676.
β
Kodali, H. P., et al. (2018). Effects of copper and zinc on ischemic heart disease and myocardial infarction: a Mendelian randomization study. American Journal of Clinical Nutrition, 108(2), 237β242. PMID: 29982268.
β
Liu, K., et al. (2024). Genetically determined circulating micronutrients and the risk of nonalcoholic fatty liver disease. Scientific Reports, 14(1), 1105. PMID: 38212362.
β
Moksnes, M. R., et al. (2024). A genome-wide association study provides insights into the genetic etiology of 57 essential and non-essential trace elements in humans. Communications Biology, 7, 432. PMID: PMID: 38594418.
β
Ng, E., et al. (2015). Genome-wide association study of toxic metals and trace elements reveals novel associations. Human Molecular Genetics, 24(16), 4739-4745. PMID: 26025379.
β
Yang, W., et al. (2022). Genome-wide association and Mendelian randomization study of blood copper levels and 213 deep phenotypes in humans. Communications Biology, 5(1), 405. PMID: 35501403.
β
Yang, Z., et al. (2024). Causal relationship of serum micronutrient with autoimmune neurological diseases: a Mendelian randomization study. Preprint, Research Square. https://doi.org/10.21203/rs.3.rs-4590504/v1
β
β
StrandIQ SNP Marker Count: 7
β
StrandIQ Genes for Trait:Β
DNTTIP2, GCLC, GCLC-AS1, GCLM, GPX1, GSTP1, RHOA
β
References:
Grussy, K., et al. (2023). The importance of polymorphisms in the genes encoding glutathione S-transferase isoenzymes in development of selected cancers and cardiovascular diseases. Molecular Biology Reports, 50, 9649β9661. PMID: 37862954.
β
Maes, O. C., et al.(2010). A GSTM3 polymorphism associated with an etiopathogenetic mechanism in Alzheimer disease. Neurobiology of Aging, 31(1), 34β45. PMID: 18423940.
β
Polonikov, A., et al. (2022). The impact of genetic polymorphisms in glutamateβcysteine ligase, a key enzyme of glutathione biosynthesis, on ischemic stroke risk and brain infarct size. Life, 12(4), 602. PMID: 35455093.
β
Wang, C., et al. (2020). Association between glutathione peroxidase-1 (GPX1) Rs1050450 polymorphisms and cancer risk. BioMed Research International, 2020, 4057160. PMID: 31966829.
β
Yadav, P., Chatterjee, A., & Bhattacharjee, A. (2014). Identification of deleterious nsSNPs in Ξ±, ΞΌ, Ο and ΞΈ class of GST family and their influence on protein structure. Genomics Data, 2, 66β72. PMID: 26484073.
β
β
StrandIQ SNP Marker Count: 21
β
StrandIQ Genes for Trait:Β
ABO, ACSL3P1, ACTL6B, BMAL1, BTN1A1, CNGB3, DUOX2, F5, GOLGA2P1, H2BC4, HFE, INHCAP, KCTD17, LARRPM, MAD1L1, RAB6B, SLC17A2, SRPRB, TF, TFR2, TMPRSS6
β
References:
Beben, B., et al. (2009). Variants in TF and HFE explain approximately 40% of genetic variation in serum-transferrin levels. American Journal of Human Genetics, 84(1), 60β65. PMID: 19084217.
β
Benyamin, B., et al. (2014). Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nature Communications, 5, 4926. PMID: 25352340.
β
Buerkli, S., et al. (2021). The TMPRSS6 variant (SNP rs855791) affects iron metabolism and oral iron absorption β a stable iron isotope study in Taiwanese women. Haematologica, 106(11), 2897β2905. PMID: 33054130.
β
Chambers, J.C., et al. (2009). Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nature Genetics, 41(11), 1170β1172. PMID: 19820698.
β
Guindo-MartΓnez, M., et al. (2021). The impact of non-additive genetic associations on age-related complex diseases. Nature Communications, 12(1), 2436. PMID: 33893285.
β
Li, J., et al. (2015). Genome-wide admixture and association study of serum iron, ferritin, transferrin saturation and total iron binding capacity in African Americans. Human Molecular Genetics, 24(2), 572β581. PMID: 25224454.
β
McLaren, C.E., et al. (2011). Genome-wide association study identifies genetic loci associated with iron deficiency. PLoS One, 6(3), e17390. PMID: 21483845.
β
Toivonen, J., et al. (2024). The value of genetic data from 665,460 individuals in managing iron deficiency anaemia and suitability to donate blood. Vox Sanguinis, 119(1), 34β42. PMID: 38018286.
β
Traglia, M., et al. (2011). Association of HFE and TMPRSS6 genetic variants with iron and erythrocyte parameters is only in part dependent on serum hepcidin concentrations. Journal of Medical Genetics, 48(9), 629β634. PMID: 21785125.
β
Yang, Z., et al. (2024). Causal relationship of serum micronutrient with autoimmune neurological diseases: a Mendelian randomization study. Preprint, Research Square. https://doi.org/10.21203/rs.3.rs-4590504/v1
β
β
StrandIQ SNP Marker Count: 12
β
StrandIQ Genes for Trait:Β
ARSB, BHMT, CBS, DMGDH, FAM135B, HOMER1, KYNU, LINC01695, MTMR7, PRKG1, SDCCAG8, TCF7
β
References:
Batai, K., et al. (2021). Genome-wide association study of response to selenium supplementation and circulating selenium concentrations in adults of European descent. Journal of Nutrition, 151(2), 293β302. PMID: 33382417.
β
Cornelis, M.C., et al. (2015). Genome-wide association study of selenium concentrations. Human Molecular Genetics, 24(5), 1469β1477. PMID: 25343990.
β
Evans, D.M., et al. (2013). Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Human Molecular Genetics, 22(19), 3998β4006. PMID: 23720494.
β
Gong, J., et al. (2013). Genome-wide association study of serum selenium concentrations. Nutrients, 5(5), 1706β1718. PMID: 23698163.
β
Huang, T., et al. (2024). Genetically predicted circulating concentrations of micronutrients and risk of hypertensive disorders of pregnancy: a Mendelian randomization study. Archives of Gynecology and Obstetrics, 310, 1019β1025.
β
Li, J., et al. (2023). Causal effect of selenium levels on osteoporosis: a Mendelian randomization study. Nutrients, 15(24), 5065.
β
Liu, K., et al. (2024). Genetically determined circulating micronutrients and the risk of nonalcoholic fatty liver disease. Scientific Reports, 14(1), 1105. PMID: 38212362.
β
Moksnes, M.R., et al. (2024). A genome-wide association study provides insights into the genetic etiology of 57 essential and non-essential trace elements in humans. Communications Biology, 7, 432.
β
Sharma, P., et al. (2024). Genetic determinants of selenium availability, selenium-response, and risk of polycystic ovary syndrome. Biological Trace Element Research, 202(11), 4843β4857. PMID: 38227265.
β
Yang, W., et al. (2022). Genome-wide association and Mendelian randomization study of blood copper levels and 213 deep phenotypes in humans. Communications Biology, 5(1), 405. PMID: 35501403.
β
β
StrandIQ SNP Marker Count: 15
β
StrandIQ Genes for Trait: CA1, FNTB, LINC01221, LINC01222, LINC02309, LINC02814, MAX, MIR4778, NBDY, PPCDC, SCAMP5, SLC36A4, SLC39A8, SPIN3, TMOD1
β
References:
β
Evans, D.M., et al. (2013). Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Human Molecular Genetics, 22(19), 3998β4006. PMID: 23720494.
β
Flatby, H.M., et al. (2023). Circulating levels of micronutrients and risk of infections: a Mendelian randomization study. BMC Medicine, 21(1), 84. PMID: 36882828.
β
Guo, D., et al. (2022). Preliminary study of genome-wide association identifies novel susceptibility genes for serum mineral elements in the Chinese Han population. Biological Trace Element Research, 200(6), 2549β2555. PMID: 34417961.
β
Kodali, H.P., Pavilonis, B.T., Schooling, C.M. (2018). Effects of copper and zinc on ischemic heart disease and myocardial infarction: a Mendelian randomization study. American Journal of Clinical Nutrition, 108(2), 237β242. PMID: 29982268.
β
Liu, K., et al. (2024). Genetically determined circulating micronutrients and the risk of nonalcoholic fatty liver disease. Scientific Reports, 14(1), 1105. PMID: 38212362.
β
Moksnes, M.R., et al. (2024). A genome-wide association study provides insights into the genetic etiology of 57 essential and non-essential trace elements in humans. Communications Biology, 7(1), 432. PMID: 38594418.
β
Ng, E., et al. (2015). Genome-wide association study of toxic metals and trace elements reveals novel associations. Human Molecular Genetics, 24(16), 4739β4745. PMID: 26025379.
β
Yang, W., et al. (2022). Genome-wide association and Mendelian randomization study of blood copper levels and 213 deep phenotypes in humans. Communications Biology, 5(1), 405. PMID: 35501403.
β
Zhou, Y., Wei, Z., Zhan, L., et al. (2024). Causal relationship of serum micronutrient with autoimmune neurological diseases: a Mendelian randomization study. Preprint, posted July 18, 2024. https://www.researchsquare.com/article/rs-4590504/v1
β
Treatment Insight Pharmacogenomic Traits (14-16)
β
StrandIQ SNP Marker Count:
- Male Balding Pattern A: 39
- Male Balding Pattern B: 33
- Male Balding Pattern C: 44
- Female Pattern Hair Loss: 4
β
StrandIQ Genes for Trait:
- Male Balding Pattern A:
C10orf11, CCDC140, CEP112, CLYBL, CPEB2-AS1, EPC1, EYA4, FARSB, FGF5, GLIS1, GLIS3, GORAB, HDAC9, JAZF1, LGR4, LINC00536, LINC00578, MRPS22, NSF, PAX3, PCCA, PRDM6, PRKCH, RAD51B, RP1-283K11.3, RP1-79C4.1, RP11-125P18.1, RP11-15B24.5, RP11-346D6.6, RP11-66B24.5, RP11-84D1.2, RREB1, RUNX1, SGPP2, SHFM1, TCF12, TEX41, ZBTB20, ZBTB20-AS1 - Male Balding Pattern B:
AC004870.3, AC004870.4, AC004901.1, AC097468.7, AC217772.1, C10orf11, C1orf127, DPY30, EBF1, EPC1, FGF5, HDAC9, KANSL1, LHPP, MEMO1, MRPS22, OFCC1, PAX3, PDGFA, PRDM6, RP11-283G6.4, RP11-283G6.5, RP11-542A14.1, RP11-846C15.2, RSPO2, RUNX1, SLC14A2, SSPN, TBX15, TEX41, WARS2, WNT10A, ZHX3 - Male Balding Pattern C:
AC003070.1, AC010987.5, AC092162.1, ALDH1L1-AS2, ARHGAP27, BCKDHA, C10orf11, C1orf127, CASC15, CTC-435M10.3, DPY30, EBF1, FAM53B, FGF5, HDAC9, KLF15, LHPP, LINC00670, LRRC36, MEMO1, MRPS22, NSF, OFCC1, PRDM6, RP11-12J10.3, RP11-283G6.4, RP11-283G6.5, RP11-418J17.1, RP11-576I22.2, RP11-846C15.2, RP11-84D1.2, RP4-799D16.1, RSPO2, RUNX1, RUNX3, SLC14A2, SPAG17, SSPN, TBX15, TEX41, TWIST1, WARS2, ZBTB38, ZHX3 - Female Pattern Hair Loss:
CYP19A1, ESR2, VDR, HSD3B1
β
References:
β
Male Balding Patterns
Backman, J.D., et al. (2021). Exome sequencing and analysis of 454,787 UK Biobank participants. Nature, 599(7886), 628β634. PMID: 34662886.
β
Chen, Y., et al. (2023). Genetic prediction of male pattern baldness based on large independent datasets. European Journal of Human Genetics, 31(3), 321β328. PMID: 36336714.
β
Eriksson, A.L., et al. (2009). Genetic variations in sex steroid-related genes as predictors of serum estrogen levels in men. Journal of Clinical Endocrinology & Metabolism, 94(3), 1033β1041. PMID: 19116238.
β
Hagenaars, S.P., et al. (2017). Genetic prediction of male pattern baldness. PLoS Genetics, 13(2), e1006594. PMID: 28196072.
β
Heilmann-Heimbach, S., et al. (2017). Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nature Communications, 8, 14694. PMID: 28272467.
β
Kanda, S., et al. (2015). Effects of functional genetic polymorphisms in the CYP19A1 gene on prostate cancer risk and survival. International Journal of Cancer, 136(1), 74β82. PMID: 24803183.
β
Liu, F., et al. (2016). Prediction of male-pattern baldness from genotypes. European Journal of Human Genetics, 24(6), 895β902. PMID: 26508577.
β
MarciΕska, M., et al. (2015). Evaluation of DNA variants associated with androgenetic alopecia and their potential to predict male pattern baldness. PLoS One, 10(5), e0127852. PMID: 26001114.
β
Pirastu, N., et al. (2017). GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nature Communications, 8(1), 1584. PMID: 29146897.
β
Yap, C.X., et al. (2018). Dissection of genetic variation and evidence for pleiotropy in male pattern baldness. Nature Communications, 9(1), 5407. PMID: 30573740.
β
Female Pattern Hair Loss
Ho, C-Y., et al. (2023). Female pattern hair loss: An overview with focus on the genetics. Genes, 14(7), 1326. PMID: 37510231.
β
Εukasik, A., et al. (2022). The role of CYP19A1 and ESR2 gene polymorphisms in female androgenetic alopecia in the Polish population. Postepy Dermatologii i Alergologii, 39(4), 708β713. PMID: 36090736.
β
Redler, S., et al. (2017). Genetics and other factors in the aetiology of female pattern hair loss. Experimental Dermatology, 26(6), 510β517. PMID: 28453904.
β
Rui, W., et al. (2015). Association of single nucleotide polymorphisms in the CYP19A1 gene with female pattern hair loss in a Chinese population. Dermatology, 231(3), 239β244. PMID: 26228318.
β
Seleit, I., et al. (2020). Vitamin D receptor gene polymorphisms Taq-1 and Cdx-1 in female pattern hair loss. Indian Journal of Dermatology, 65(4), 259β264. PMID: 32831364.
β
Tu, Y.A., et al. (2019). HSD3B1 gene polymorphism and female pattern hair loss in women with polycystic ovary syndrome. Journal of the Formosan Medical Association, 118(8), 1225β1231. PMID: 31056381.
β
Yip, L., et al. (2009). Gene-wide association study between the aromatase gene (CYP19A1) and female pattern hair loss. British Journal of Dermatology, 161(2), 289β294. PMID: 19438456.
- Minoxidil Effectiveness
StrandIQ SNP Marker Count: 3
β
StrandIQ Genes for Trait:
SULT1A1
β
References:
Chitalia, J., et al. (2018). Characterization of follicular minoxidil sulfotransferase activity in a cohort of pattern hair loss patients from the Indian Subcontinent. Dermatology and Therapy, 31(6), e12688. PMID: 30295395.
Dhurat, R., et al. (2022). SULT1A1 (Minoxidil Sulfotransferase) enzyme booster significantly improves response to topical minoxidil for hair regrowth. Journal of Cosmetic Dermatology, 21(1), 343β346. PMID: 34133836.
Goren, A., Castano, J.A., McCoy, J., Bermudez, F., Lotti, T. (2014). Novel enzymatic assay predicts minoxidil response in the treatment of androgenetic alopecia. Dermatology and Therapy, 27(3), 171β173. PMID: 24283387.
King, R.S., Ghosh, A.A., Wu, J. (2006). Inhibition of human phenol and estrogen sulfotransferase by certain non-steroidal anti-inflammatory agents. Current Drug Metabolism, 7(7), 745β753. PMID: 17073578.
Mehta, N., et al. (2024). Minoxidil sulfotransferase enzymatical activity in plants: A novel paradigm in increasing minoxidil response in androgenetic alopecia. Journal of Cosmetic Dermatology, 23(1), 339β343. PMID: 37638619.
Messenger, A.G., Rundegren, J. (2004). Minoxidil: mechanisms of action on hair growth. British Journal of Dermatology, 150(2), 186β194. PMID: 14996087.
Ramos, P.M., et al. (2021). Minoxidil sulfotransferase enzyme (SULT1A1) genetic variants predicts response to oral minoxidil treatment for female pattern hair loss. Journal of the European Academy of Dermatology and Venereology, 35(1), e24βe26. PMID: 32567076.
Sharma, A., et al. (2019). Tretinoin enhances minoxidil response in androgenetic alopecia patients by upregulating follicular sulfotransferase enzymes. Dermatology and Therapy, 32(3), e12915. PMID: 30974011.
Suchonwanit, P., Thammarucha, S., Leerunyakul, K. (2019). Minoxidil and its use in hair disorders: a review. Drug Design, Development and Therapy, 13, 2777β2786. PMID: 31496654.
Yan, A., et al. (2023). Co-delivery of minoxidil and tocopherol acetate ethosomes to reshape the hair follicular microenvironment and promote hair regeneration in androgenetic alopecia. International Journal of Pharmaceutics, 646, 123498. PMID: 37820942.
Yu, X., et al. (2010). Functional genetic variants in the 3'-untranslated region of sulfotransferase isoform 1A1 (SULT1A1) and their effect on enzymatic activity. Toxicological Sciences, 118(2), 391β403. PMID: 20881232.
- Dutasteride Effectiveness
StrandIQ SNP Marker Count: 6
β
StrandIQ Genes for Trait:
SRD5A1, SRD5A2
β
References:
Ellis, J.A., et al. (2005). Androgenic correlates of genetic variation in the gene encoding 5alpha-reductase type 1. Journal of Human Genetics, 50(10), 534β537. PMID: 16155734.
Escamilla-Cruz, M., et al. (2023). Use of 5-alpha reductase inhibitors in dermatology: A narrative review. Dermatology and Therapy (Heidelberg), 13(8), 1721β1731. PMID: 37432644.
Ha, S.J., et al. (2003). Analysis of genetic polymorphisms of steroid 5alpha-reductase type 1 and 2 genes in Korean men with androgenetic alopecia. Journal of Dermatological Science, 31(2), 135β141. PMID: 12670724.
Hayes, V.M., et al. (2007). 5alpha-reductase type 2 gene variant associations with prostate cancer risk, circulating hormone levels and androgenetic alopecia. International Journal of Cancer, 120(4), 776β780. PMID: 17136762.
Li, X., et al. (2011). Meta-analysis of three polymorphisms in the steroid-5-alpha-reductase, alpha polypeptide 2 gene (SRD5A2) and risk of prostate cancer. Mutagenesis, 26(3), 371β383. PMID: 21177315.
Makridakis, N., Reichardt, J.K. (2005). Pharmacogenetic analysis of human steroid 5 alpha reductase type II: comparison of finasteride and dutasteride. Journal of Molecular Endocrinology, 34(3), 617β623. PMID: 15956333.
Rhie, A., et al. (2019). Genetic variations associated with response to dutasteride in the treatment of male subjects with androgenetic alopecia. PLoS One, 14(9), e0222533. PMID: 31525235.
Vila-Vecilla, L., Russo, V., de Souza, G.T. (2024). Genomic markers and personalized medicine in androgenetic alopecia: A comprehensive review. Cosmetics, 11(5), 148.
Villapalos-GarcΓa, G., et al. (2021). Effects of Cytochrome P450 and transporter polymorphisms on the bioavailability and safety of dutasteride and tamsulosin. Frontiers in Pharmacology, 12, 718281. PMID: 34690761.
Xiao, Q., et al. (2020). Structure of human steroid 5Ξ±-reductase 2 with the anti-androgen drug finasteride. Nature Communications, 11(1), 5430. PMID: 33110062.
Zeng, X.T., et al. (2017). Association between SRD5A2 rs523349 and rs9282858 polymorphisms and risk of benign prostatic hyperplasia: A meta-analysis. Frontiers in Physiology, 8, 688. PMID: 28955247.
- Dutasteride Metabolism
StrandIQ SNP Marker Count: 3
β
StrandIQ Genes for Trait:
CYP3A4, CYP4V2, CYP19A1
β
References:
Burns, O., et al. (2018). Relative bioavailability of fixed-dose combinations of tamsulosin and dutasteride: Results from 2 randomized trials in healthy male volunteers. Clinical Pharmacology Drug Development, 7(4), 422β434. PMID: 28800206.
Eriksson, A.L., et al. (2009). Genetic variations in sex steroid-related genes as predictors of serum estrogen levels in men. Journal of Clinical Endocrinology & Metabolism, 94(3), 1033β1041. PMID: 19116238.
FrancΓ¨s, M.P., et al. (2024). Utilising SNP association analysis as a prospective approach for personalising androgenetic alopecia treatment. Dermatology and Therapy (Heidelberg), 14(4), 971β981. PMID: 38555553.
Jiang, J., et al. (2010). Association of genetic variations in aromatase gene with serum estrogen and estrogen/testosterone ratio in Chinese elderly men. Clinica Chimica Acta, 411(1β2), 53β58. PMID: 19818337.
Makridakis, N.M., et al. (2000). Biochemical and pharmacogenetic dissection of human steroid 5 alpha-reductase type II. Pharmacogenetics, 10(5), 407β413. PMID: 10898110.
Rhie, A., et al. (2019). Genetic variations associated with response to dutasteride in the treatment of male subjects with androgenetic alopecia. PLoS One, 14(9), e0222533. PMID: 31525235.
Vila-Vecilla, L., Russo, V., de Souza, G.T. (2024). Genomic markers and personalized medicine in androgenetic alopecia: A comprehensive review. Cosmetics, 11(5), 148.
Villapalos-GarcΓa, G., et al. (2021). Effects of cytochrome P450 and transporter polymorphisms on the bioavailability and safety of dutasteride and tamsulosin. Frontiers in Pharmacology, 12, 718281. PMID: 34690761.
Yeap, B.B., et al. (2019). A 5Ξ±-reductase (SRD5A2) polymorphism is associated with serum testosterone and sex hormone-binding globulin in men, while aromatase (CYP19A1) polymorphisms are associated with oestradiol and luteinizing hormone reciprocally. Clinical Endocrinology (Oxford), 90(2), 301β311. PMID: 30353958.
- Finasteride Effectiveness
StrandIQ SNP Marker Count: 6
β
StrandIQ Genes for Trait:
SRD5A1, SRD5A2
β
References:
Hayes, V.M., et al. (2007). 5alpha-Reductase type 2 gene variant associations with prostate cancer risk, circulating hormone levels and androgenetic alopecia. International Journal of Cancer, 120(4), 776β780. PMID: 17136762.
Li, X., et al. (2011). Meta-analysis of three polymorphisms in the steroid-5-alpha-reductase, alpha polypeptide 2 gene (SRD5A2) and risk of prostate cancer. Mutagenesis, 26(3), 371β383. PMID: 21177315.
Vila-Vecilla, L., Russo, V., de Souza, G.T. (2024). Genomic markers and personalized medicine in androgenetic alopecia: A comprehensive review. Cosmetics, 11(5), 148.
Xiao, Q., et al. (2020). Structure of human steroid 5Ξ±-reductase 2 with the anti-androgen drug finasteride. Nature Communications, 11(1), 5430. PMID: 33110062.
Zeng, X.T., et al. (2017). Association between SRD5A2 rs523349 and rs9282858 polymorphisms and risk of benign prostatic hyperplasia: A meta-analysis. Frontiers in Physiology, 8, 688. PMID: 28955247.
- Finasteride Metabolism
StrandIQ SNP Marker Count: 1
β
StrandIQ Genes for Trait:
CYP3A4
β
References:
Chau, C.H., et al. (2015). Finasteride concentrations and prostate cancer risk: results from the Prostate Cancer Prevention Trial. PLoS One, 10(5), e0126672. PMID: 25955319.
Elens, L., et al. (2013). CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics, 14(1), 47β62. PMID: 23252948.
Hulin-Curtis, S.L., et al. (2010). Finasteride metabolism and pharmacogenetics: new approaches to personalized prevention of prostate cancer. Future Oncology, 6(12), 1897β1913. PMID: 21142863.
Pratt, V.M., et al. (2023). CYP3A4 and CYP3A5 genotyping recommendations: A joint consensus recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase. Journal of Molecular Diagnostics, 25(9), 619β629. PMID: 37419245.
Wang, D., Sadee, W. (2016). CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing. Pharmacogenetics and Genomics, 26(1), 40β43. PMID: 26488616.
- Spironolactone Effectiveness
StrandIQ SNP Marker Count: 2
β
StrandIQ Genes for Trait:
CYP19A1
β
References:
Abdel-Raouf, H., et al. (2021). A novel topical combination of minoxidil and spironolactone for androgenetic alopecia: Clinical, histopathological, and physicochemical study. Dermatology Therapy, 34(1), e14678. PMID: 33320406.
Burns, L.J., et al. (2020). Spironolactone for treatment of female pattern hair loss. Journal of the American Academy of Dermatology, 83(1), 276β278. PMID: 32259535.
Sinclair, R.D. (2018). Female pattern hair loss: a pilot study investigating combination therapy with low-dose oral minoxidil and spironolactone. International Journal of Dermatology, 57(1), 104β109. PMID: 29231239.
- Estradiol Effectiveness
StrandIQ SNP Marker Count: 2
β
StrandIQ Genes for Trait:
CYP19A1
β
References:
Haiman, C.A., et al. (2007). Genetic variation at the CYP19A1 locus predicts circulating estrogen levels but not breast cancer risk in postmenopausal women. Cancer Research, 67(5), 1893β1897. PMID: 17325027.
Jiang, J., et al. (2010). Association of genetic variations in aromatase gene with serum estrogen and estrogen/testosterone ratio in Chinese elderly men. Clinica Chimica Acta, 411(1β2), 53β58. PMID: 19818337.
Nebert, D.W., et al. (2013). Human cytochromes P450 in health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1612), 20120431. PMID: 23297354.
Zhang, X.L., et al. (2012). SNP rs2470152 in CYP19 is correlated to aromatase activity in Chinese polycystic ovary syndrome patients. Molecular Medicine Reports, 5(1), 245β249. PMID: 21972004.
- Topical Retinoic Acid Effectiveness
StrandIQ SNP Marker Count: 3
β
StrandIQ Genes for Trait:
CRABP2, CYP26B1, RXRG
β
References:
Bielli, A., et al. (2019). Cellular retinoic acid binding protein-II expression and its potential role in skin aging. Aging (Albany NY), 11(6), 1619β1632. PMID: 30888968.
Manolescu, D.C., et al. (2010). Newborn serum retinoic acid level is associated with variants of genes in the retinol metabolism pathway. Pediatric Research, 67(6), 598β602. PMID: 20308937.
Rhie, A., et al. (2019). Genetic variations associated with response to dutasteride in the treatment of male subjects with androgenetic alopecia. PLoS One, 14(9), e0222533. PMID: 31525235.
Stevison, F., et al. (2015). Role of retinoic acid-metabolizing cytochrome P450s, CYP26, in inflammation and cancer. Advances in Pharmacology, 74, 373β412. PMID: 26233912.
- IGF-1 Bioavailability
StrandIQ SNP Marker Count: 1
β
StrandIQ Genes for Trait:
IGF1R
β
References:
Ahn, S.Y., et al. (2012). Effect of IGF-I on hair growth is related to the anti-apoptotic effect of IGF-I and up-regulation of PDGF-A and PDGF-B. Annals of Dermatology, 24(1), 26β31. PMID: 22363152.
Ben Amitai, D., et al. (2006). IGF-1 signalling controls the hair growth cycle and the differentiation of hair shafts. Journal of Investigative Dermatology, 126(9), 2135. PMID: 16778791.
BonafΓ¨, M., et al. (2003). Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. Journal of Clinical Endocrinology & Metabolism, 88(7), 3299β3304. PMID: 12843179.
Castela, M., et al. (2017). Igf1r signalling acts on the anagen-to-catagen transition in the hair cycle. Experimental Dermatology, 26(9), 785β791. PMID: 28094870.
Inui, S., Itami, S. (2013). Induction of insulin-like growth factor-I by cepharanthine from dermal papilla cells: a novel potential pathway for hair growth stimulation. Journal of Dermatology, 40(12), 1054β1055. PMID: 24164396.
Noordam, R., et al. (2016). Both low circulating insulin-like growth factor-1 and high-density lipoprotein cholesterol are associated with hair loss in middle-aged women. British Journal of Dermatology, 175(4), 728β734. PMID: 26959288.
β
Panchaprateep, R., Asawanonda, P. (2014). Insulin-like growth factor-1: roles in androgenetic alopecia. Experimental Dermatology, 23(3), 216β218. PMID: 24499417.
Philpott, M.P., et al. (1994). Effects of insulin and insulin-like growth factors on cultured human hair follicles: IGF-I at physiologic concentrations is an important regulator of hair follicle growth in vitro. Journal of Investigative Dermatology, 102(6), 857β861. PMID: 8006448.
Tavakkol, A., et al. (1992). Expression of growth hormone receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin. Journal of Investigative Dermatology, 99, 343β349.PMID: 1324963
Wang, Y., et al. (2025). Targeting IGF1-induced cellular senescence to rejuvenate hair follicle aging. Aging Cell, 24(7), e70053. PMID: 40159808.
Werner, H. (2023). The IGF1 signaling pathway: From basic concepts to therapeutic opportunities. International Journal of Molecular Sciences, 24(19), 14882. PMID: 37834331.
- Latanoprost Effectiveness
StrandIQ SNP Marker Count: 3
β
StrandIQ Genes for Trait:
PTGFR
β
References:
Blume-Peytavi, U., et al. (2012). A randomized double-blind placebo-controlled pilot study to assess the efficacy of a 24-week topical treatment by latanoprost 0.1% on hair growth and pigmentation in healthy volunteers with androgenetic alopecia. Journal of the American Academy of Dermatology, 66(5), 794β800. PMID: 21875758.
Cornejo-GarcΓa, J.A., et al. (2016). Pharmacogenomics of prostaglandin and leukotriene receptors. Frontiers in Pharmacology, 7, 316. PMID: 27708579.
Coronel-PΓ©rez, I.M., et al. (2010). Latanoprost in the treatment of eyelash alopecia in alopecia areata universalis. Journal of the European Academy of Dermatology and Venereology, 24(4), 481β485. PMID: 20028444.
Rafati, M., et al. (2022). The effect of latanoprost 0.005% solution in the management of scalp alopecia areata, a randomized double-blind placebo-controlled trial. Dermatology Therapy, 35(6), e15450. PMID: 35289043.
Ussa, F., et al. (2015). Association between SNPs of metalloproteinases and prostaglandin F2Ξ± receptor genes and latanoprost response in open-angle glaucoma. Ophthalmology, 122(5), 1040β1048.e4. PMID: 25704319.
- Steroidal Inflammatory Effectiveness
StrandIQ SNP Marker Count: 1
β
StrandIQ Genes for Trait:
NR3C1
β
References:
Botelho Barra, C., et al. (2022). Pharmacogenomic markers of glucocorticoid response in congenital adrenal hyperplasia. PLoS One, 17(12), e0279298. PMID: 36538565.
Nordkap, L., et al. (2022). Hair cortisol, glucocorticoid gene receptor polymorphisms, stress, and testicular function. Psychoneuroendocrinology, 146, 105942. PMID: 36179533.
Oakley, R.H., Cidlowski, J.A. (2013). The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. Journal of Allergy and Clinical Immunology, 132(5), 1033β1044. PMID: 24084075.
Ramirez-Falcon, M., et al. (2024). Defining the differential corticosteroid response basis from multiple omics approaches. International Journal of Molecular Sciences, 25(24), 13611. PMID: 39769372.
Sombetzki, C., et al. (2025). Impact of glucocorticoid receptor polymorphism rs6198 on sepsis survival in a prospective multicenter cohort. Scientific Reports, 15(1), 24760. PMID: 40634451.
Ε tampar, P., et al. (2024). Genetic variability in the glucocorticoid pathway and treatment outcomes in hospitalized patients with COVID-19: a pilot study. Frontiers in Pharmacology, 15, 1418567. PMID: 39135792.
Strehl, C., et al. (2019). Glucocorticoidsβall-rounders tackling the versatile players of the immune system. Frontiers in Immunology, 10, 1744. PMID: 31396235.
- Phytotherapy Benefits
StrandIQ SNP Marker Count: 2
β
StrandIQ Genes for Trait:
PTGDR2
β
References:
FrancΓ¨s, M.P., et al. (2024). Utilising SNP association analysis as a prospective approach for personalising androgenetic alopecia treatment. Dermatology and Therapy (Heidelberg), 14(4), 971β981. PMID: 38555553.
β
Garza, L.A., et al. (2012). Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Science Translational Medicine, 4(126), 126ra34. PMID: 22440736.
Nieves, A., Garza, L.A. (2014). Does prostaglandin D2 hold the cure to male pattern baldness? Experimental Dermatology, 23(4), 224β227. PMID: 24521203.
Shin, D.W. (2022). The physiological and pharmacological roles of prostaglandins in hair growth. Korean Journal of Physiology & Pharmacology, 26(6), 405β413. PMID: 36302616.
- Cetirizine Effectiveness
StrandIQ SNP Marker Count: 2
β
StrandIQ Genes for Trait:
PTGDR2
β
References:
Chen, X., et al. (2022). Topical cetirizine for treating androgenetic alopecia: A systematic review. Journal of Cosmetic Dermatology, 21(11), 5519β5526. PMID: 35976065.
Gohary, Y.M., et al. (2025). The efficacy of topical cetirizine using microneedling in androgenetic alopecia male patients. Archives of Dermatological Research, 317(1), 665. PMID: 40167621.
Jiang, S., et al. (2023). The efficacy of topical prostaglandin analogs for hair loss: A systematic review and meta-analysis. Frontiers in Medicine (Lausanne), 10, 1130623. PMID: 36999072.
β
This content, including StrandIQβ’ DNA analysis reports and any Happy Head products and/or services referenced therein, is for informational and cosmetic purposes only. It is not intended to diagnose, treat, cure, or prevent any disease. This content does not constitute medical advice and should not be used to make healthcare decisions. References to prescription treatments are educational in nature. Always consult a licensed healthcare professional for any medical concerns or treatment decisions.
β